
Kind attention of Guide/Principals/Registrars,

Hope your students have completed the Student Projects approved by the state council.

1. On completion of the project, all are requested to submit (hard copy) the Utilisation Certificate (UC) in the prescribed format (already sent) duly signed by the guide, HOD and Head of the Institution with seal.

2. The Seminar Paper (SP) should be sent to: enquiry.tanscst@nic.in only. No need to send hard copy.

 - In the subject line mention your project code no. (as mentioned in the approval letter & the approved list of projects also available in the council website).

 - The Seminar Paper should be in MS Word Format, Times New Roman, Font Size 12, Margins 2.5cm on all sides and single line spacing.

 - The Seminar Paper should be strictly restricted to two pages only.

 - The Seminar Paper Should Not Contain any Table/Figure. Refer Sample Paper for formatting.

 - PDF/Hard copy of seminar paper will not be included in the proceedings and not in the proper format as mentioned above.

Note: Submit Utilisation Certificate (UC) & Seminar Paper (SP) on or before 30.09.2020.

-md-
MEMBER SECRETARY
TAMILNADU STATE COUNCIL FOR SCIENCE AND TECHNOLOGY
DOTE CAMPUS, CHENNAI - 600 025

STUDENT PROJECT SCHEME 2019-2020
UTILISATION CERTIFICATE

(TWO COPIES)

1. Name of the guide and address :

2. Name of the student(s) :

3. Title of the project :

4. Project code :

 It is certified that a sum of Rs............ (Rupees) Sanctioned by the council for carrying out above mentioned student project has been utilized for the purpose for which it was sanctioned and sum of Rs. ..remaining unutilized is refunded.

 Signature of the guide Signature of the HOD Signature of the
 REGISTRAR/PRINCIPAL/DEAN
 With SEAL
ADVANCED TECHNIQUE FOR SOIL MOISTURE CONTENT BASED AUTOMATIC MOTOR PUMPING FOR AGRICULTURAL LAND PURPOSE

A. Anand, R. Ramesh, M. Nandhu and N. Ram
Department of Chemistry,
Anna University, Chennai – 600 025

Abstract

The project mainly aims in designing a system which is capable of checking the soil moisture content and automatically pumps the water into the field for agriculture purpose using solar energy. In irrigation process the most important parameter of monitoring is soil. So, the soil moisture sensor is used to find whether the soil is wet or dry. The pumping motor will pump the water only when the field is dry. The sensor sends the status of the soil to the microcontroller 8051 and based on that the controller will display the status in the LCD and switch ON or OFF the submersible pump.

Introduction

Automatic irrigation system is very important in the field of agriculture. It is used to maintain the level of water or moisture in the soil where crops are planted. Moisture sensor is interfaced with 8051 microcontroller. The sensor sends the status of the soil to the microcontroller and if the soil is dry the micro controller will automatically switch ON the solar powered water pump system and GSM modem is used to inform the owner.

Motivation

The motivation for this project came from the countries where economy is based on agriculture and the climatic conditions let to lack of rains and scarcity of water. If the farm land has the water pump, manual invention by farmers is required to turn the pump on/off whenever needed.

Materials and Methods

The isolated fungal culture which was observed to produce coloured pigments on the cultured agar plate was selected and subcultured on the PDA plates. The plates were incubated at 30°C for 14 days. The fungal endophytes were mass cultivated on potato dextrose broth by placing actively growing pure culture in 1000ml Erlenmeyer flasks containing 200ml of the medium. The flasks were incubated at 37°C for 7 days in shaker incubator at 150 rpm.

Characterization

The black pigment and pink-red pigment extracted from Curvularia protuberata and Fusarium oxysporum showed maximum absorbance of 260 and 270 nm respectively in the range of 800 - 200 nm Wavelength UV/Vis bandwidth at 1.5 nm and received Absorbance at (Max-Min) at scan speed 400 nm/min
Working

Soil moisture sensor is interfaced with the controller to sense the moisture content, if the soil is dry the microcontroller automatically switches ON the submersible pump to drip water into the field and send message to the owner through GSM modem. 12V Solar power is used as power supply unit, where energy is absorbed from the sun through the panel and solar charge controller is used to charge the rechargeable batteries, these batteries provide power for the system operation. The function of the inverter is that it converts the battery’s voltage to AC voltage to activate the pump.

Advantages

Reduces the human intervention, Eco-friendly, Optimum level of water is used and Increasing productivity.

Conclusion

The Soil moisture content based irrigation system was implemented. Salient features of the system are temperature and water usage monitoring. User can easily have predefined the levels of the moisture and is regularly update the information to the owner. This project can also be implemented through IoT based technique.

Guide: Mr. S. Sankar, Associate Professor, Department of Chemistry, Anna University, Chennai – 600 025.